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Abstract. Five sediment cores taken from the Larache offshore (~ 35°N, 7°W) were investigated in order to determine the water depth 
draining and the advection strength of the Mediterranean Outflow Water (MOW) to the Atlantic during the last 40 kyrs. The benthic δ13C 
records and the gradients generated allowed to register past shifts in the proportions of the MOW during the late Quaternary. The variation 
through time of the benthic δ18O values suggests shifts in the salinity and or temperature, this has a direct influence on the water mass 
density, and therefore on the depth advection of the MOW. Besides, the mean grain-size revealed a significantly stronger advection during 
the Younger Dryas (YD) and Dansgaard-Oeschger (D-O) stadials. 
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Résumé. Cinq carottes sédimentaires récoltées au large de Larache (~35°N, 7°W) ont été investiguées afin de reconstruire la profondeur et 
la force d’écoulement des eaux méditerranéennes (MOW) vers l’Atlantique durant les derniers 40 ka. L’étude de la variation des valeurs de 
l’isotope carbone (δ13C) et des gradients générés ont permis d’enregistrer en fonction du temps les changements de la proportion des eaux 
méditerranéennes traversant le détroit de Gibraltar. La variation à travers le temps des valeurs de l’isotope oxygène (δ18O) suggère des 
changements dans la salinité et/ou la température, ceci a une influence directe sur la densité de la masse d'eau, et donc sur la profondeur 
d’écoulement de la MOW. Par ailleurs, l’analyse granulométrique indique que la vitesse d’écoulement la plus forte a été enregistrée durant 
le « Younger Dryas » (YD) et les stades Dansgaard-Oeschger (D-O). 

Mots-clés : Quaternaire terminal, écoulement d’eaux méditerranéennes, foraminifères benthiques, granulométrie, isotopes 13C et 18O. 
 

INTRODUCTION 

The densities difference between the Mediterranean Sea 
and the Atlantic Ocean implies the exchange of water 
through the Strait of Gibraltar. Mediterranean Outflow 
Water (MOW) provides a pronounced high salinity (>38‰) 
component to the modern hydrography of the Atlantic 
Ocean (Wust 1936, Worthington 1976, Reid 1981, 
Lacombe & Richez 1985, Turner 1986, Washburn & Kaese 
1987, Ochoa & Bray 1991, Jaaidi, 1993, Price & Yang 
1998, Hallberg 2000, Xu et al. 2006, Bozec et al. 2011). As 
a result, a plume of warm and saline water mass takes form 
and builds a layer in intermediate-depth of the Atlantic 
ocean (e.g., Iorga & Lozier 1999, Johnson & Stevens 2000). 
This water mass has long been recognized as an important 
contributor to the heat and salt content of the North Atlantic 
(Zenk 1975, Reid 1979). 

Climatic changes, sea-level and the changing hydraulic 
control conditions in the Strait of Gibraltar are the main 
factors, which induced variations of the Mediter-
ranean−Atlantic water-mass exchanges (Béthoux 1984, 
Bryden & Stommel 1984, Rohling & Gieskes 1989, 
Rohling & Bryden 1994, Matthiesen & Haines 1998, Myers 
et al. 1998, Matthiesen & Haines 2003). Zahn et al. (1987) 
results reveal an ongoing advection of MOW to the Atlantic 
during the last 140,000 years B.P. Nevertheless, at a very 
similar location (core 15666: 34.96°N, 7.12°W, and 803 m 
depth) to our study area and for different time slices,

 

 Sarnthein et al. (1994) results show a progressive decrease 
of the MOW advection from the glacial to the Holocene. In 
addition and at smaller time scales, the strength of the 
MOW has fluctuated between periods of enhanced flow and 
weaker advection rates (e.g. Elant 1985, Jaaidi 1993). 

The oscillations in the MOW's intensity occurred in 
phase with Greenland temperature variations with a 
stronger outflow during the stadials and lower advection 
was observed during interstadials: an acceleration of the 
MOW were recorded during Dansgaard-Oeschger stadials, 
Heinrich events and the Younger Dryas (Faugères et al. 
1986, Vergnaud-Grazzini et al. 1989, Cacho et al. 2000; 
Sierro et al. 2005, Voelker et al. 2006; Toucanne et al. 
2007). During the warm Dansgaard-Oeschger interstadials, 
the Bølling-Allerød (11−14 ka BP ) and the Early Holocene 
(5−9 ka BP), the meridional carbon isotope gradient 
indicates a significantly decreased but still active MOW 
(Thunell et al. 1984, Vergnaud Grazzini et al. 1986, Zahn et 
al. 1987, Grousset et al. 1988 Schönfeld 2002, Toucanne et 
al. 2007). An additional reduced, but less pronounced, rate 
of MOW advection occurred at about 50.000 years, this 
stage is known for particularly strong freshwater runoff 
from North Africa (Street & Grove 1979). Previous studies 
focused on the pathway of the MOW to the northeastern 
Atlantic have shown that this water mass became denser 
and settled deeper in the water column during the last 
glacial (Schönfeld & Zahn 2000) and that its flow strength 
varied on millennial time scales (e.g., Voelker et al. 2006). 
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In addition, the changes in the Mediterranean Outflow 
Water through the strait of Gibraltar since the Last Glacial 
Maximum are well recorded in the sediments deposited on 
the Gulf of Cadiz (Rogerson et al. 2006); accordingly, and 
in order to reconstruct the buoyancy depth and the 
advection history of the Mediterranean outflow to the 
southern part of the Gulf of Cadiz (~ 35°N; 7°W) during the 
late quaternary (~ 40 kyr), five sediment cores were 
investigated in this study and were retrieved from the 
Larache continental slope (Fig. 1). 

REGIONAL SETTING 

Present-day oceanographic circulation in the Gulf of 
Cadiz is dominated by the exchange of antagonistic currents 
of water masses between the Atlantic Ocean and the 
Mediterranean Sea (Ochoa & Bray 1991). The relatively 
cold Atlantic Inflow Water flows eastward along the Iberian 
margin partly entering the Mediterranean Sea. It is 
composed of North Atlantic Surficial Water and North 
Atlantic Central Water (NACW). The upper-thermocline 
NACW deepens from about 300 m water depth close to the 
Strait of Gibraltar to about 600 m in the outer and southern 
parts of the gulf of Cadiz? (Ochoa & Bray 1991, Mauritzen 
et al. 2001). Below this level, the MOW flows between ~ 
500 and 1400 m water depth above the North Atlantic Deep 
Water (NADW) (Ambar & Howe 1979, Ambar 1983, 
Ambar et al. 1999, Baringer & Price 1999). 

The MOW consists of changeable parts of Levantine 
Intermediate Water (LIW) and Western Mediterranean 
Deep Water (WMDW), which contributes an estimated 
0.2Sv (Kinder & Parilla 1987, Tomczak & Godfrey 1994) 

to the 1Sv outflow volume (Kinder & Parilla 1987, Bryden 
& Stommel 1984). Upon leaving the Strait of Gibraltar, 
MOW is characterized by increased density sinks to water 
depths between 800 and 1500 m (Zenk 1971, Armi & 
Farmer 1985, Gascard & Richez 1985) and spreads to the 
west and southwest (Kawase & Sarmiento 1986, Kaese & 
Zenk 1987). On the flow to the south, the water mass 
characteristics of MOW mixes with underlying waters and 
becomes continuously less dense and the influence of 
formerly deep advection diminishes to the south. As a 
result, off capes Ghir and Yubi, the lower MOW boundary 
is rather 200 m deeper than 700 m off Spain (Eberwein & 
Mackensen 2008). 

The hydrographic δ13C record, obtained at 36°N/09°W 
(Duplessy 1972, reveals that the modern MOW is 
characterized by heavy δ13C values reaching about 1.3 ‰, 
and which are more pronounced at 35°N (Ganssen 1983, 
Ganssen & Sarnthein 1983). To the south, between Cape 
Ghir and Cape Yubi, the δ13CDIC values of the MOW range 
between 0.65 and 0.83 ‰, with a mean of 0.72 ± 0.08 ‰. 

METHODOLOGY 

In order to reconstruct the Late Quaternary (~ 40 kyr) 
history of the Mediterranean Outflow to the southern part of 
the Gulf of Cadiz in Moroccan Atlantic margin (~ 35°N), 
five sediment cores which cover the last 40 kyrs were 
investigated. The sediment cores (Tab. 1) were recovered 
from the Larache continental slope (Fig. 1) at water depths 
ranging from 507 m to 1380 m with the aid of a gravity 
corer during RV Sonne Cruise SO-175 in November 2003 
and RV Pelagia Cruise 64PE284 in February 2008. 

 
Figure 1. Geological map showing the cores distribution in the study area (from Medialdea et al. 2009). 
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Generally, Cibicidoides wuellerstorfi calcifies its test 
close to a 1:1 relationship with the δ13C of ambient 
dissolved inorganic carbon (DIC) (Woodruff et al., 1980, 
Belanger et al. 1981, Graham et al. 1981, Zahn et al. 1986), 
and thus faithfully records bottom water δ13CDIC (Duplessy 
et al. 1988, McCorkle & Keigwin 1994, Mackensen & 
Licari 2004, Eberwein & Mackensen 2006). Hence, 
decreasing δ13C values of this species with increasing water 
depth of NW Africa are interpreted as reflecting the δ13CDIC 
of the different water masses occurring there (Eberwein & 
Mackensen 2008). Consequently, we used δ13C of 
Cibicidoides wuellerstorfi to reconstruct the approximate 
boundaries between water masses in the Moroccan Atlantic 
Margin (~ 35°N), in addition to the Late Quaternary 
variations in the advection rate of the Mediterranean 
Outflow Water into the Atlantic Ocean. 

We present records of benthic stable isotopes from 
sediments retrieved from the sea floor; an initial screening 
of samples distributed along the cores showed that 
Cibicidoides wuellerstorfii was sometime absent or sparse 
downcore. Instead, Uvigerina peregrine, which calcifies its 
test close to equilibrium of the bottom water δ18O 
(Shackleton 1974, McCorkle et al. 1990), appeared present 
in most of the samples also displaying better preservation 
and it was chosen to compensate Cibicidoides 
wuellerstorfii. On average, five to seven individuals of 
benthic foraminifera were handpicked from the > 150 µm 
size fraction of each sample, sufficient to reach the 
minimum weight of material (180 µg) detectable by the 
mass spectrometer. Oxygen and carbon isotopic data 
obtained are reported in the usual notation, which is referred 
to the PeeDee belemnite (V-PDB) standard. The benthic 
isotope were measured in the Department of Geosciences 
(FB5-Geowissenschaften) at the Bremen University using a 
Finnigan MAT 252 mass spectrometer with a precision of ± 
0.07 ‰ for δ18O and ± 0.05 ‰ for δ13C.  The deep-sea 
sediments comprise biogenic and terrigenous components, 
to isolate the terrigenous fraction from biogenic sediments, 
samples are taken from the sediment cores in a spatial 
resolution of 5 cm and treated in order to remove organic 
carbon, calcium carbonate and biogenic opal by using H2O2 
(35%), HCL (10%) and NaOH respectively. Once prepared, 
the grain-size can be measured with the Coulter laser 
particle sizer that gives the relative proportions of various 
grain size classes. 

RESULTS 

Age Model 

Age Model of the cores Geob 12723, Geob 9065 and 
Geob 9069 was obtained by correlating the Fe/Ca ration 
(Fig. 2) with the core Geob 9064, which has been dated by 
14C. Furthermore, the chronostratigraphic framework of the 
core Geob 12723 was improved by correlation of the 
benthic carbon isotope record with published values of the 
core MD99-2339 (35.88°N, 7.53°W; 1170 m water depth 
(Voelker et al. 2006)). They show clear similarities and 
matching sections and provide thus additional age control 
points. It is therefore possible to conclusively deduce an 
accurate age model of the core Geob 12723 (Fig. 3). Ages 
between the tie points were obtained by linear interpolation 
and the major transition Holocene-Last Glaciation could be 
easily identified in all cores. 

Oxygen isotope 

The δ18O values of benthic foraminifera (C. 
wuellerstorfi) are displayed in (Fig. 4). The graph shows 
that δ18O increases down the water column, reflecting 
decreasing temperature and or increasing salinity depth 
wise. Interestingly, the Holocene to Glacial benthic δ18O 
shift (taken as the difference between the most enriched 
value of δ18O in the Last Glacial Maximum (LGM) and the 
minimum value recorded in the Holocene) decreases down 
the water column, in the shallower core (Geob 9069) this 
offset is found to be 2.18 ‰, in the deeper cores (Geob 
9065 and Geob 9064) it reaches 1.65 ‰ and 0.96 ‰, 
respectively. The benthic δ18O values of the core Geob 
12723 vary between 1.8 ‰ and 3.67 ‰ recorded at 7 kyr 
and 26.65 kyr, respectively. 

Carbon isotope 

The means of the benthic δ13C records show that the 
Last Glacial Maximum exhibits the lowest values varying 
between – 0.04 ‰ (Geob 9040) and 0.43 ‰ (Geob 9069). 
The Holocene and the Late Glacial are characterized by 
relatively higher values, the mean benthic δ13C varies 
between 0.36 ‰ (Geob 9064) and 1.23 ‰ (Geob 9069) in 
the Holocene, and between 0.66 ‰ (Geob 9064) and 1.26 
‰ (Geob 12723) during the late Glacial. 

 

Table 1. Cores information. 

Station No. Latitude °N Longitude °W Water depth (m) Recovery (m) 

GeoB 9065-1 35:19.60 6:42.08 507 6.29 

GeoB 9069-1 35:18.21 6:49.14 669 5.13 

GeoB 9064-1 35:24.91 6:50.71 702 5.44 

GeoB 12723-1 35:18.50 6:57.80 883 4.48 

GeoB 9040-1 35:39.56 7:23.38 1380 3.43 
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Figure.2 Correlation of the gravity cores using the Fe/Ca ratio. 

 

Figure 3. Correlation between the benthic δ13C records of Geob 12723 and the core MD99-2339. 
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Figure 4. δ18O values of benthic foraminifera (Cibicidoides wuellerstorfi). 
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Grain size 

Grain-size is of relevance for the present study, it was 
measured to depict the hydrodynamic changes from 
sediment composition and thereby address the MOW's 
strength variability. The mean grain size (Fig. 7) indicates 
changes in the strength of the prevailing bottom current; it 
varies between 10.25 and 20.72 µm and shows clear 
millennial-scale variability with higher values, especially 
during the Younger Dryas and the last glacial maximum 
inception. 

DISCUSSION 

Determination of the MOW depth 

Present day oceanographic circulation in the Gulf of 
Cadiz (GoC) is dominated by the exchange of water masses 
between the Atlantic Ocean and the Mediterranean Sea 
(Ochoa & Bray 1991). Flowing westwards through the strait 
of Gibraltar, the MOW prevails in the northern Gulf where 
it flows between ~ 500 and 1400 m water depth above the 
North Atlantic Deep Water (NADW) (Ambar et al. 1999, 
Baringer & Price 1999). For the southern GoC along the 
Moroccan Atlantic margin, Pelegrí et al. (2005) suggest the 
presence of MOW at 800 m. Eberwein & Mackensen 
(2008) showed that water mass stratification during the 
LGM off Morocco was similar to present-day conditions, 
accordingly, and by analogy with modern water mass 
stratification pattern, we suggest that the shallower cores 
(Geob 9065, Geob 9069, Geob 9064) which were retrieved 
at water depths of 507 m, 669 m and 702 m, respectively, 
can be interpreted as deposits of NACW formation. The 
benthic isotopic signal of Geob 12723 (water depth of 883 
m) may reflect the variation of the ambient isotope values 
of MOW mass through time and the isotopic record of the 
core Geob 9040 raised from a water depth of 1380 m can be 
attributed to NADW formation. 

The δ13C of the glacial MOW (Geob12723) is 
characterized by a mean of 1.2 ‰, in the Holocene we 
denote lower values of δ13C with a mean of 0.96 ‰. 

The mean benthic δ13C of NADW (Geob9040) is found 
to be 0.66 ‰ in the glacial and 1.08 ‰ during the Holocene 
(Fig. 5).  

The comparison of our benthic δ13C record with 
published values in nearby locations reveals that the δ13C 
values of glacial MOW and NADW perfectly match with 
data from sites along the Portuguese continental margin 
(Schönfeld & Zahn 2000) to southern sites between Cape 
Ghir (31°N) and Cape Yubi (27.5°N), where glacial MOW 
is characterized by a mean δ13C of 1.15 ± 0.13 ‰. NADW 
is described by a mean δ13C of 0.44 ± 0.16 ‰ (Eberwein & 
Mackensen 2008). This supports the overall water mass 
stratification in Moroccan Atlantic margin as argued by 
Zahn & Mix (1991) and Sarnthein et al. (1994). 

Besides, and as indicated above, the benthic δ18O values 
of the core Geob 12723 exhibit a glacial‒Holocene shift of 
~ 1.87 ‰, relatively bigger than the next shallower cores. 
Regarding the ice volume effect (~1.2 ‰; Labeyrie et al. 
1987), which indicates that this shift exceeds the sea level 
rise related value by about 0.67 ‰ and therefore reveals 
that the glacial waters were either about 3.04 °C colder (a 
δ18O increase of 0.22 ‰ is equivalent to a 1°C cooling; 
Visser et al. 2003) or saltier than the Holocene ones. This 
may be due to the intrusion, at intermediate depth, of 
Mediterranean Outflow Water, marked by higher salinity 
which may influence oxygen isotope signal at this level. 

To verify if our cores are really the deposits of the 
NACW, the MOW and the NADW formations, we refer to 
the benthic δ13C variations of the core 15669 (34°53.5’, 
7°07.1’; 2022 m water depth, Zahn et al. 1987), which was 
retrieved from the NADW ambient water mass, and that of 
the core MD99-2339 (35.88°N, 7.53°W; 1170 m water 
depth; Voelker et al. 2006]) that have been interpreted to 
reflect the advection of the MOW. 

 

 
Figure 5. δ13C average values of benthic foraminifera (Cibicidoides wuellerstorfi). 
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For the core Geob 9040 representing probably the 
NADW formation, a gradient was computed using the 
benthic δ13C signal of the core 15669. Knowing that this 
core represents pure NADW as a prevailing water mass 
deposition (Zahn et al. 1987), this gradient will allow us to 
check if the δ13C of the core Geob 9040 can effectively be 
considered as representative of the NADW water mass. 

In the following, the term of ∆δ13C is used to indicate 
the difference between the values of the benthic records. 
The  ∆δ13CGeob9040-15669 shown in (Fig. 6a) for reference 
displays positive and negative values indicating changes in 
the contribution of the NADW to our core location (1380 
m). From 18 to 40 kyr B.P., a negative gradient or slightly 
close to zero indicates as was expected of the NADW 
formation. An intriguing finding in our data set is the 
positive gradient before 18 kyr, this highlights that the 
MOW reached this location during this period. 

As indicated above, the core Geob 12723 was retrieved 
from a water mass depth characterized probably by MOW 
spreading; accordingly, its benthic δ13C record was 
compared with the δ13C signature of the MOW provided by 
the core MD99-2339 (Voelker et al. 2006). The Figure 6b 
shows that the ∆δ13CGeob12723‒MD99-2339 remains, most of the 
time, close to zero indicating almost exclusive presence of 
the MOW at the core Geob 12723 location. 

By analogy with the modern water masses stratification, 

we suggest that the water depths shallower than 800 m are 
characterized by the oceanic sinks of the MOW and or the 
NACW. Hence, and in order to determine accurately which 
water mass flows at the sampling sites of the cores Geob 
9064, Geob 9069 and Geob 9065, gradients between the 
δ13C values of these cores and the core MD99-2339 were 
calculated.  

The ∆δ13CGeob9064‒MD99-2339 exhibits almost continuously 
null values (Fig. 6c), by analogy to the core Geob 12723, 
this pattern suggests the presence of nearly pure MOW at 
the location of the core Geob 9064 (702 m). At shallower 
depths, the ∆δ13CGeob9069‒MD99-2339 and the  ∆δ13CGeob9065‒MD99-

2339 display positive, null and negative values (Fig. 6d, e) 
and thereby depict changes in the spreading of the NACW 
and the MOW water masses. Positive gradients are seen 
during the time interval between 8 to 25 kyr B.P. at 507 m 
water depth (Geob 9065) and between 8 and 9 kyr at 669 m 
(Geob 9069). They indicate a significantly presence of the 
NACW water mass at this water depths during these periods 
of time. In contrast, during most of glacial time, the null and 
negative gradients suggest stronger influence of the MOW 
water mass. 

Reconstruction of the MOW advection 

The δ13C values of Mediterranean deep water are 
regulated by the strength of deepwater formation in the Gulf  
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Figure 6. Gradients generated from the difference between the benthic δ13C records of                              
our cores and the cores MD99-2339 (Voelker et al. 2006) and 15669 (Zahn et al. 1987). 
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of Lions, the flux of organic carbon to the floor, and the rate 
of water exchange with the Atlantic (Béthoux et al. 1998, 
Pierre 1999, Gómez 2003). 

Slower rates of deepwater convection and/or higher 
export productions would lead to decreasing values of δ13C 
in bottom waters (Pierre 1999). In contrast, higher δ13C 
values should be recorded at times of vigorous deepwater 
convection or lower carbon export. Of these two factors, the 
strength of Mediterranean deepwater formation probably 
contributed more to the δ13C variability, because surface 
productivity and export production are relatively low in the 
Mediterranean (Béthoux et al. 1998, Gómez 2003). Thus, 
heavier benthic δ13C values are more related to ventilation 
than to nutrient levels and therefore indicate a vigorous 
deep convection in the Gulf of Lions (Sierro et al. 2005). 

In addition, Zahn et al. (1987) assumed that the 
variation in intermediate water δ13C values are related to 
changes in advection rates of MOW.  We can therefore 
deduce that during glacial time, the heavy values of the 
benthic carbon isotope record in the core Geob 12723 (Fig 
7) indicate significantly increased influence of the MOW on 
the North Atlantic circulation (Curry & Lohmann 1985, 
Duplessy et al. 1988a). This explains why glacial MOW 
was traced to 20°N (Zahn et al. 1987), and even as far south 
as to 30°S (Bickert & Mackensen 2004). 

During the Last Glacial Maximum time slice which is 
defined as the time interval between 26.500 and 19.000 
years ago (Clark et al. 2009) with its center at 21 kyr B.P. 
(Mix et al. 2001), the variation in ice volume and the 
resulting sea level changes are assumed to have a great 
influence on the volume of the MOW core. In this study, 
the generated gradients (Fig. 6) indicate that throughout the 
LGM significantly lower influence of the MOW was 
recorded (Fig. 8), during this time, the lower sea level 
implied less space in the strait of Gibraltar, thus we argue 
for a reduced outflow volume during the colder time. 

Interestingly, the most positive benthic δ13C are 
recorded in core Geob 12723 during the Last Glacial 
Maximum (LGM) (Fig. 7) and a restricted exchange 
through the strait of Gibraltar due to the progressive sea 
level lowering (Schönfeld & Zahn 2000, Matthiesen & 
Haines 2003). So, even with a narrowed geometry of the 
strait of Gibraltar caused by low sea level and hence a 
strong decrease in the outflow volume (Béthoux 1984, 
Bryden & Stommel 1984, Rohling & Bryden 1994, 
Matthiesen & Haines 1998), the glacial outflow is estimated 
at 0.39 Sv compared with 0.86 Sv today, Mediterranean 
water flowed into the Gulf of Cadiz during the LGM. 

In addition, a reduced cross section might have 
enhanced the MOW current velocity, theoretically aided by 
stronger winds during glacial time (e.g., Gasse 2000; 
Kohfeld & Harrison 2001, Goudie & Middleton 2001). The 
increased MOW strength is further corroborated by stronger 
bottom currents, indicated by the deposition of biggest 
grain-size especially in the LGM inception (Fig. 7). 

The grain-size excursions were especially abrupt during 
the Younger Dryas (YD) and Dansgaard-Oeschger (D-O) 
stadials (Fig. 7) and were marked by a prominent increase 
suggesting that in addition to the enhanced MOW flow 
known during the cold climatic intervals (Faugères et al. 

1986, Vergnaud-Grazzini et al. 1989, Cacho et al. 2000, 
Sierro et al. 2005, Llave et al. 2006, Rogerson et al. 2006a, 
Voelker et al. 2006, Toucanne et al. 2007 Rogerson et al. 
2012), strong deepwater convection can be inferred. Off 
NW Africa salinities spiked during most HEs (Heinrich 
Events) (Kiefer 1998), the inflow of salt-enriched 
subtropical Atlantic waters into the western Mediterranean 
increased surface water density and facilitated deep 
convection in the Gulf of Lions (Voelker et al. 2006). 
Furthermore, low sea-surface temperatures (Cacho et al. 
1999), intense north-westerly winds, and dry, cool 
conditions on land (Combourieu-Nebout et al. 2002, 
Sanchez-Goni et al. 2002, Moreno et al. 2005) facilitated an 
increased formation of WMDW (Western Mediterranean 
Deep Water) in the Gulf of Lions during D-O stadials and 
Heinrich events (Rohling et al. 1998, Cacho et al. 2000, 
Sierro et al. 2005, Voelker et al. 2006). 

Besides, during the LGM, the MOW has sunk relatively 
deeper than during older ages (Fig. 8), according Schönfeld 
& Zahn (2000), the deeper glacial MOW advection was 
caused by increased density, as a result of higher salinity 
and lower temperature of Mediterranean waters during the 
LGM, result argued by the highest δ18O values recorded at 
this period of time. The earlier glacial times are marked by 
lower δ18O values suggesting either lower salinity and/or 
higher temperature, accordingly the MOW became less 
dense and the deep advection has shifted upwards. 

The Early Holocene and the warm Dansgaard-Oeschger 
interstadials are characterized  by lower δ13C values and 
decrease in δ18O record (Fig. 7) when local climate 
conditions increased sea surface temperatures and reduced 
salinity (Cacho et al., 2000; Sierro et al., 2005) resulting in 
reduced density gradient between Atlantic inflow and 
Mediterranean outflow (Sierro et al., 2005) and therefore 
weaker MOW advection (e.g., Huang et al., 1972; Diester-
Haass, 1973; Bethoux, 1979a; Thunell et al., 1984 ; 
Vergnaud Grazzini et al., 1986 ; Zahn et al., 1987; Grousset 
et al., 1988; Sanchez- Goni et al., 2002; Schönfeld, 2002; 
Moreno et al., 2005; Toucanne et al., 2007). These periods 
are coincident with low grain size values (Fig. 7) which hint 
to a reduction of the MOW flow strength. 

The weakening in the MOW strength was coupled with 
a hydrographic change in the water mass stratification, the 
generated gradients highlight an oceanic sink of the NACW 
(Fig. 8), the NADW was not traceable in our location. This 
evidence would indicate that fresher entrains the dense 
Mediterranean water to flow deeply, replacing hence the 
NADW water mass. 

Nowadays, usually most of the MOW is flowing around 
Iberia northward into the NE Atlantic with an average of 
2.17 Sv, and relatively little is spreading south to the 
Moroccan margin, the southward and westward transport 
are close to zero except for the periods 1950 to 1955 and 
1985 to 2005, when the westward transport is about 1 Sv 
(Bozec et al. 2011). Our results showed that the MOW 
flowed southward (hitting our cores sites) during colder 
stages, indicating that the direction towards the MOW was 
flowing has changed, this suggestion is argued by Rogerson 
et al. (2012) results, which show opposite fluctuations in 
flow activity between the Last Glacial Maximum and the 
present day. 
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Figure 7. Mean grain-size record and benthic isotope data of the core Geob 12723. (YD: Younger Dryas; HE: Heinrich 
 Events; LGM: Last Glacial Maximum; Numbers above The δ18O record indicate Dansgaard-Oeschger interstadials). 
 

 

Figure 8. Diagram (deduced from Fig. 6) illustrating the variation 
through time of the MOW core thickness. 

CONCLUSION 

The records of the gradients generated from the benthic 
stable isotopes of sediments retrieved from the Larache 
offshore suggest that unlike today, the MOW was spreading 
south to the Moroccan margin during at least the last 40 
kyrs. 

The conceptual view of past spreading path of the MOW 
is supplemented in this study by the determination of the 
upper and lower boundaries. Our results revealed the 
presence of nearly pure MOW at depth ranged between 702 
and 803 m, the upper and lower boundaries varied through 
time between 507 and 1380 m. 

The variations in the mean grain-size data provide 
further evidence with respect to the seesaw in the MOW 
velocity for the period that extend back to 40 kyrs with 
increased strength during the Younger Dryas (YD) and 
Dansgaard-Oeschger (D-O) stadials. 
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